Endogenous Wnt signaling maintains neural progenitor cell potency.

نویسندگان

  • Eric M Wexler
  • Andres Paucer
  • Harley I Kornblum
  • Theodore D Palmer
  • Daniel H Geschwind
چکیده

Wnt signaling regulates neural stem cell (NSC) function and development throughout an individual's lifetime. Intriguingly, adult hippocampal progenitors (AHPs) produce several Wnts, and the intracellular machinery necessary to respond to them, creating the potential for an active autocrine-signaling loop within this stem cell niche. However, the standard luciferase-based Wnt assay failed to detect this signaling loop. This assay is inherently less temporally sensitive to activity among a population of unsynchronized proliferating cells because it relies on the rapidly degrading reporter luciferase. We circumvented this limitation using a promoter assay that employs green fluorescent protein (GFP), as a relatively long-lived reporter of canonical Wnt activity. We found that at baseline, AHPs secreted functional Wnt that self-stimulates low-level canonical Wnt signaling. Elimination baseline Wnt activity, via application of an extracellular Wnt antagonist promoted neurogenesis, based on a combination of unbiased gene expression analysis and cell-fate analysis. A detailed clonal analysis of progenitors transduced with specific intracellular antagonists of canonical signaling, either Axin or truncated cadherin (beta-catenin sequestering), revealed that loss of baseline signaling depletes the population of multipotent precursors, thereby driving an increasing fraction to assume a committed cell fate (i.e., unipotent progenitors). Similarly, baseline Wnt signaling repressed differentiation of human NSCs. Although the specific Wnts produced by neural precursors vary with age and between species, their effects remain remarkably consistent. In sum, this study establishes that autonomous Wnt signaling is a conserved feature of the neurogenic niche that preserves the delicate balance between NSC maintenance and differentiation.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Endogenous WNT Signaling Regulates hPSC-Derived Neural Progenitor Cell Heterogeneity and Specifies Their Regional Identity

Neural progenitor cells (NPCs) derived from human pluripotent stem cells (hPSCs) are a multipotent cell population that is capable of nearly indefinite expansion and subsequent differentiation into the various neuronal and supporting cell types that comprise the CNS. However, current protocols for differentiating NPCs toward neuronal lineages result in a mixture of neurons from various regions ...

متن کامل

Wnts influence the timing and efficiency of oligodendrocyte precursor cell generation in the telencephalon.

Oligodendrocyte precursor cells (OPCs) are generated from multiple progenitor domains in the telencephalon in developmental succession from ventral to dorsal. Previous studies showed that Wnt signaling inhibits the differentiation of OPCs into mature oligodendrocytes. Here we explored the hypothesis that Wnt signaling limits the generation of OPCs from neural progenitors during forebrain develo...

متن کامل

9-cis-Retinoic Acid and 1,25-dihydroxy Vitamin D3 Improve the Differentiation of Neural Stem Cells into Oligodendrocytes through the Inhibition of the Notch and Wnt Signaling Pathways

Background: Differentiating oligodendrocyte precursor cells (OPCs) into oligodendrocytes could be improved by inhibiting signaling pathways such as Wnt and Notch. 9-cis-retinoic acid (9-cis-RA) and 1,25-dihydroxyvitamin D3 (1,25[OH]2D3) can ameliorate oligodendrogenesis. We investigated whether they could increase oligodendrogenesis by inhibiting the Wnt and Notch signaling pathways.Methods: Co...

متن کامل

Spatio-temporal Model of Endogenous ROS and Raft-Dependent WNT/Beta-Catenin Signaling Driving Cell Fate Commitment in Human Neural Progenitor Cells

Canonical WNT/β-catenin signaling is a central pathway in embryonic development, but it is also connected to a number of cancers and developmental disorders. Here we apply a combined in-vitro and in-silico approach to investigate the spatio-temporal regulation of WNT/β-catenin signaling during the early neural differentiation process of human neural progenitors cells (hNPCs), which form a new p...

متن کامل

Dual Function of Wnt Signaling during Neuronal Differentiation of Mouse Embryonic Stem Cells

Activation of Wnt signaling enhances self-renewal of mouse embryonic and neural stem/progenitor cells. In contrast, undifferentiated ES cells show a very low level of endogenous Wnt signaling, and ectopic activation of Wnt signaling has been shown to block neuronal differentiation. Therefore, it remains unclear whether or not endogenous Wnt/β-catenin signaling is necessary for self-renewal or n...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Stem cells

دوره 27 5  شماره 

صفحات  -

تاریخ انتشار 2009